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Hybrid Electromagnetic Reconstruction of Multiple
2-D Subsurface Inhomogeneous Objects Based on

FRTM and FEBI-LM Methods Enhanced by
Domain Decomposition

Jiawen Li , Qi Qiang Liu , Member, IEEE, Zhen Guan, and Feng Han , Senior Member, IEEE

Abstract—This article presents a hybrid method to reconstruct
multiple 2-D inhomogeneous objects straddling multiple subsur-
face planar layers and segmented into multiple subdomains. In
the forward electromagnetic (EM) scattering computation, the
finite-element boundary integral (FEBI) method is employed to
simultaneously solve for the total electric fields inside the multiple
subdomains and the equivalent current on their boundaries,
which are connected with each other by the 2-D layered-medium
dyadic Green’s functions (LMDGFs). The scattered fields at the
receiver array are then obtained by multiplying the boundary
current with radiation matrices. The EM reconstruction is
implemented in two steps. First, the frequency-domain reverse
time migration (FRTM) combined with a level set of the indicator
function and the K-means clustering is used to determine the
approximate rectangular boundary for each full-wave inver-
sion (FWI) subdomain. Second, the sensitivity matrix of the
measured scattered electric fields with respect to the dielectric
parameters inside all rectangular subdomains is assembled. The
Levenberg–Marquardt (LM) method is then used to fulfill the
multidomain EM FWI by iteratively calling the FEBI forward
solver. Numerical experiments are carried out to compare the
implementation cost and efficiency of the forward FEBI solver
and the inverse FEBI-LM solver with and without domain
decomposition (DD).

Index Terms—Domain decomposition (DD), electromagnetic
(EM) reconstruction, finite-element boundary integral (FEBI)
method, Levenberg–Marquardt (LM) method.

I. INTRODUCTION

SUBSURFACE reconstruction by electromagnetic (EM)
waves has been drawing more and more attention in recent
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years due to its wide applications in both military and civil
areas such as land mine detection [1], buried pipe inspection
[2], pavement crack surveys [3], and unexploded ordinance
characterization [4].

Based on the information content of the unknown targets
obtained in the reconstruction [5], the commonly used EM
reconstruction approaches can be categorized into qualitative
methods and quantitative ones. Qualitative methods mainly
include migration, sampling, and tomography [6]. For exam-
ple, the reverse time migration (RTM) widely adopted in
subsurface detection by a ground penetrating radar (GPR)
[7] is realized by solving the two-way EM wave equation
and invoking the cross correlation imaging condition [8]. The
modified frequency-domain RTM (FRTM) can overcome the
high-cost defect of the traditional RTM [9] by computing
the horizontally layered-medium dyadic Green’s functions
(LMDGFs) in advance [10]. The linear sampling method
(LSM) achieves the scatterer support reconstruction by deter-
mining the gain matching relationship between the scattered
field data recorded at the receiver array and Green’s functions
corresponding to a series of fictitious source points in the
imaging domain [11], [12]. In diffraction tomography, the EM
scattering equation is usually linearized by the Born or Rytov
approximation [13]. Consequently, the images of electrically
small objects placed inside a stratified medium can be directly
obtained without iterations [14]. The backpropagation (BP)
algorithm used in reflection tomography obtains the scatterer
image by mapping the measured scattered fields back to the
fictitious induced current in the imaging domain [15], [16].
Although these qualitative methods can reconstruct unknown
objects in a relatively fast fashion, only the general locations
and rough shapes are retrieved. In particular, for the subsurface
reconstruction, when the imaging domain is only illuminated
in the topside, both LSM and BP only obtain severely distorted
shapes and blurry boundaries of the buried objects [17], [18].

The quantitative reconstruction, which is always realized
by EM full-wave inversion (FWI), is able to retrieve both
the accurate shapes and dielectric parameters of the unknown
subsurface objects. The commonly used EM FWI is formu-
lated using the volume integral equations (VIEs) in which
the equivalent current and EM fields in all the discretized
pixels are interconnected by Green’s functions [19]. In order
to lower the computational cost of the forward scattering,
researchers use the fast Fourier transform (FFT) to accelerate
the integration of the multiplication of the equivalent current
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and Green’s functions, which can be treated as convolution for
a homogeneous [20] or a planarly stratified [21] background
medium. Based on this fast forward scattering algorithm, a
series of FWI methods such as contrast source inversion
(CSI) and variational Born iterative method (VBIM) have
been developed to reconstruct subsurface 3-D isotropic objects
[22] or anisotropic ones [23]. Unfortunately, these inversion
methods must sustain unaffordable computational cost when
the subsurface scatterers straddle multiple layers or a rough
surface is present [24]. The root reason is that the shift-
invariance property of Green’s functions is disrupted, and thus,
the FFT acceleration fails in the forward scattering compu-
tation. Although some direct forward solvers can avoid the
FFT acceleration of the multiplication of matrices and vectors,
they are unsuitable for our subsurface reconstruction problem.
For example, the low-rank-based H matrices algorithm [25]
realizes the fast solution of the discretized integral equations
by approximating the original dense impedance matrix into
a sparse one through finding some subblocks in it that can
be estimated by some low-rank matrices. However, such an
approximation requires asymptotically smooth kernels [26].
The EM wave reflection in the layered background interface
actually deteriorates the smoothness of the Green’s function
kernel, which will suppress the superiority of the H matrices
algorithm. Although the hierarchical H2 matrices method [27]
still can keep the low-rank advantage for oscillatory kernels,
it usually requires more involved computation [26]. Since the
implementation of FWI usually includes numerous forward
scattering computation, applying the H2 matrices method may
incur a remarkable additional cost.

The EM FWI based on differential equations (DEs) can
completely overcome the heavy dependence on fast algorithms
for forward scattering computation based on VIEs since the
local EM fields are described by differential-form Maxwell
equations or the Helmholtz equations, and thus, Green’s func-
tions become unnecessary. Previous research results indicate
that the conventional DE-based numerical approaches such as
the finite-element method (FEM) can be directly used in EM
FWI, e.g., geophysical exploration [28] as long as absorbing
boundary conditions are imposed on the inversion domain.
In our previous work [29], we use the FEM to compute
EM fields scattered from 2-D subsurface objects straddling
multiple planar layers but with a radiation boundary condition
(RBC) to truncate the computational domain. The equivalent
current on the radiation boundary is formulated by the 1-D
boundary integral (BI) equation and solved by the traditional
method of moments (MoMs). This finite-element BI (FEBI)
method is further combined with the Levenberg–Marquardt
(LM) method to reconstruct 2-D inhomogeneous objects strad-
dling multiple subsurface layers. The current work is the
extension of [29]. The motivation is to reconstruct multiple
subsurface 2-D objects positioned far from each other at a low
cost by introducing domain decomposition (DD). Specifically
speaking, the whole computational domain is decomposed into
several independent subdomains in which the 2-D scatterers
are placed. Each subdomain is enclosed by a smooth radiation
boundary and the FEBI method is adopted to solve for the
EM fields inside it. The EM fields and equivalent current

Fig. 1. Multiple 2-D inhomogeneous scatterers straddling multiple subsurface
planar layers and enclosed by multiple smooth boundaries are illuminated by
a series of electric dipoles. The FEBI method with the DD is adopted to
compute the scattered fields at the receiver array. In the inversion, the FRTM
provides the a priori information for the FEBI-LM implementation.

at all the subdomain boundaries are linked by LMDGFs.
The state equation is thus formulated with DD and the total
EM fields at all these boundaries are obtained. They are
multiplied with radiation matrices to compute the scattered
EM fields at the receiver array [29]. In the reconstruction,
the qualitative method FRTM combined with a level set of
the indicator function and the K-means clustering is first
used to determine the boundaries of multiple subdomains,
and then, the FEBI-LM is implemented to invert dielectric
parameters of scatterers enclosed inside them. One should
note that, although the adaptive cross approximation (ACA)
algorithm also saves computation time and memory cost in
multidomain EM scattering problems [30], it cannot be used
for the FWI of multiple subsurface objects since the matrix
approximation by a series of vector products in the forward
scattering computation may lead to accumulated errors in the
inverse iterations. This phenomenon will become more severe
when the subdomains are closer to each other.

The rest of this article is organized as follows. In Section II,
the formulas for the 2-D FEBI method with DD are first
derived based on the formulas given in [29]. Then, the 2-D
FRTM is briefly mentioned. The level set of the indicator
function and the K-means clustering used to determine the
multiple rectangular FWI regions based on the FRTM image
are described. Finally, the assembly of the sensitivity matrix
for the FEBI-LM method with DD is discussed in detail. In
Sections III and IV, a forward scattering example and two FWI
examples are, respectively, given to validate the reliability and
computation efficiency of the FEBI method with DD and the
FEBI-LM method with DD assisted by FRTM. In Section V,
the conclusion and summary are presented.

II. METHODS

As shown in Fig. 1, several inhomogeneous scatterers
are separately placed inside the computational subdomains
V1, . . . ,VM , which straddle multiple subsurface planar layers
and are wrapped by the smooth boundaries S1, . . . , SM . This
EM scattering configuration is the extension of that shown
in [29, Fig. 1(a)] but with the DD introduced. The forward
scattering computation for the mth subdomain is fulfilled by
FEM implemented inside Vm and by BI on the boundary Sm.
However, the FWI is fulfilled by LM implemented in the
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rectangular region Dm. In the following, we will detailedly
discuss the assembly of the system matrix for the FEBI
method with DD, the implementation of FRTM to obtain the
approximate locations of the subsurface objects, the level-set
method to determine the multiple rectangular regions for FWI,
and the assembly of the sensitivity matrix for FWI with DD.

A. Assembly of the System Matrix for 2-D FEBI With DD

We make several assumptions before the derivation. First,
only the transverse electric (TE) mode is considered in this
work. All the mathematical formulas presented in this work
can be referred to those given in [29] for the TE mode.
Second, the whole region is divided into M subdomains. Each
subdomain and its smooth boundary are discretized using the
same strategy adopted in [29]. Therefore, the mth subdomain
Vm is discretized into several quadrilateral elements with Nm

i
nodes and its boundary Sm is divided into Nm

b arcs. Third, there
are NT transmitters and NR receivers placed in the first layer,
which is air. The discretized algebraic state equation for FEBI
with DD can be compactly written as follows:

Ze = V (1)

where

Z =

26666664
Z1,1 · · · Z1,m · · · Z1,M

...
. . .

...
Zm,1 Zm,m Zm,M

...
. . .

...
ZM,1 · · · ZM,m · · · ZM,M

37777775 (2a)

e =
�
e1 · · · em · · · eM�T

(2b)

V =
�
V1 · · ·Vm · · ·VM�T

(2c)

in which superscript T denotes the matrix transpose by block
and superscript m denotes the mth subdomain. A submatrix
in the diagonal line of (2a) has the same structure as the Zh

matrix in [29, eq. (5)] but is only constructed for the FEBI
implementation inside the mth subdomain shown in Fig. 1. The
nondiagonal submatrices in (2a) represent the mutual coupling
among S1, . . . , SM . Let us take Zm,m and Zm,1 as examples.
Since the discretization strategy used here is the same as that
adopted in [29], they have the dimensions of (Nm

i + 2Nm
b ) ×

(Nm
i + 2Nm

b ) and (Nm
i + 2Nm

b ) × (N1
i + 2N1

b ). By referring to
[29, eq. (5)], we can construct them as follows:

Zm,m =

24Zm
ii Zm

ib 0
Zm

bi Zm
bb Zm

S
0 Zm,m

M Zm,m
J

35 (3a)

Zm,1 =

240 0 0
0 0 0
0 Zm,1

M Zm,1
J

35 (3b)

in which the dimensions of each submatrix in (3a) have been
discussed in [29, Sec. II]. In (3b), Zm,1

M ∈ CNm
b ×N1

b represents
the coupling from the equivalent magnetic current on S1 to
the electric fields on Sm, while Zm,1

J ∈ CNm
b ×N1

b represents
the coupling from the equivalent electric current on S1 to the
electric fields on Sm. The detailed assembly of each submatrix

of Zm,m and Zm,1 is given in (A1) in the Appendix. One should
note that subscript M in (3) denotes the magnetic current
instead of the index of SM . In a similar way, by referring to [29,
eq. (5)], we can construct the submatrix em ∈ C(Nm

i +2Nm
b )×NT in

(2b) and the submatrix Vm ∈ C(Nm
i +2Nm

b )×NT in (2c) as follows:

em =

2664
em

i

em
b

Jm
b

3775 , Vm =

2664
0

0

Vm
S

3775 (4)

in which em is the unknown coefficient matrix and Vm is
the source matrix whose computation is given in (A2) in
the Appendix. Finally, it is worth mentioning that the system
matrix Z in (1) has the dimensions of ΣM

m=1(Nm
i + 2Nm

b ) ×
ΣM

m=1(Nm
i + 2Nm

b ), the unknown matrix e has the dimensions of
ΣM

m=1(Nm
i + 2Nm

b )×NT , and V has the same dimensions. Once
e is solved for from (1), the scattered EM fields at the receiver
array can be obtained by multiplying the radiation matrix by
e. They are written as follows:

Esct
y = REy e =

�
REy,1 · · ·REy,m · · ·REy,M

�
e (5a)

Hsct
x = RHx e =

�
RHx,1 · · ·RHx,m · · ·RHx,M

�
e (5b)

Hsct
z = RHz e =

�
RHz,1 · · ·RHz,m · · ·RHz,M

�
e (5c)

in which REy,m =
h
0 REy,m

M REy,m
J

i
, RHx,m =�

0 RHx,m
M RHx,m

J

�
, and RHz,m =

h
0 RHz,m

M RHz,m
J

i
.

The detailed assemblies of these submatrices are given in
(A3) in the Appendix. In addition, the overall radiation
matrices REy , RHx , and RHz have the same dimensions of
NR × ΣM

m=1(Nm
i + 2Nm

b ).

B. Implementation of 2-D FRTM

Because the boundary of each subdomain shown in Fig. 1
in the FWI is unknown, a qualitative method is necessary to
find the approximate locations of the subsurface scatterers at
first. Since both LSM and BP are only able to acquire blurry
top and bottom boundaries of the buried objects when they are
illuminated in the topside [17], [18], we choose RTM as the
qualitative method. In a planarly layered background, FRTM
shows the obvious superiority of computational cost over the
traditional RTM for imaging the subsurface objects [10]. Its
imaging condition is realized by integrating the wavefield data
over the whole frequency band

I (ρ) =
1

2π

Z +∞

−∞

Ur (ρ, ω) Us (ρ, ω) e jωT dw (6)

where ρ = x̂x + ẑz is the spatial sampling position in the
2-D imaging domain, T is the time window of the recorded
GPR traces, ω is the operation angular frequency, Us(ρ, ω) is
the Fourier spectrum of the source wavefield, and Ur(ρ, ω) is
the spectrum of the receiver wavefield. They are obtained by
multiplying the 2-D layered-medium Green’s function with
the spectra of the source wavelet and receiver signals [31],
respectively,

Us (ρ, ω) = g
�
ρ, ρs, ω

�
· S
�
ρs, ω

�
(7a)

Ur (ρ, ω) = g
�
ρ, ρr, ω

�
· R∗

�
ρr, ω

�
e− jωT (7b)
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where g is the Green’s function, S is the spectrum of the
source waveform transmitted from ρs, and R is the spectrum
of the recorded signal sampled at ρr. For the 2-D TE mode,
the layered-medium g actually is the ŷŷ-component of the 3-D
LMDGF GEJ whose evaluation can be found in [32, eq. (28)]
and [33, eqs. (21)–(24)]. Finally, we want to emphasize that,
compared with the detailed FRTM algorithm given in [10],
the only difference in this work is that 2-D transmitters and
receivers are used.

C. Determination of the 2-D Rectangular Boundary For
Each FWI Subdomain

Because the FRTM discussed in Section II-B only provides
the approximate locations of the subsurface objects [10], it is
necessary to implement some new algorithms to determine the
specific rectangular boundary for each subdomain Dm shown
in Fig. 1. In this work, we apply the level set to an indicator
function built for a normalized image [34] and then use the
K-means clustering [35] to finally determine the rectangular
boundary. The details are listed in the following.

1) Use (6) to compute the image I(1) when the unknown
subsurface objects are present and the image I(1)

b when
they are absent. Therefore, I(1)

b is the theoretical image of
the original layered background since the layer interface
position is known.

2) Compensate the image intensity attenuation of both I(1)

and I(1)
b caused by the EM wave propagation inside the

conductive subsurface region by multiplying them with
the same varying factor, which increases with the depth
z. The compensation is mathematically formulated as
follows:

I(2) = I(1) × α
�√

ze|k
n
i |z
�2

(8a)

I(2)
b = I(1)

b × α
�√

ze|k
n
i |z
�2

(8b)

where α is an empirical coefficient, kn
i is the imaginary

part of the wavenumber for the center frequency of the
source wavelet propagation inside the nth subsurface
layer, and the squared power corresponds to the multipli-
cation of Us and Ur in (6). Note that the compensation
factor in (8) comes from the large argument approxima-
tion of the 2-D Green’s function (zeroth-order Hankel
function of the second kind), which is proportional to
√

(2/πkρ)e− jkρ [36]. In addition, the compensation is
not implemented for the subsurface regions 0.5λFRTM
above and 2.0λFRTM beneath a layer interface. Here,
the wavelength λFRTM is computed based on the center
frequency of the source wavelet and corresponding layer
parameters. This circumvention is reasonable since a
layer interface itself is known but generates a strong
disturbance to scatterer images.

3) Subtract the compensated background image I(2)
b from

the compensated overall image I(2) using

I(3) = I(2)
− I(2)

b (9)

where I(3) only includes the compensated image of the
unknown subsurface objects.

4) Refer to [34, eq. (5)], directly use the gray value
difference to avoid the logarithm of zero, and construct
the indicator function for a normalized image as follows:

I(4) (i, k) =

ˇ̌
I(3) (i, k)

ˇ̌
−
ˇ̌
I(3)
ˇ̌
minˇ̌

I(3)
ˇ̌
max −

ˇ̌
I(3)
ˇ̌
min

(10)

where i and k are the indices of the image pixels in
the x̂-direction and ẑ-direction, respectively; |I(3)|min is
the minimum value of absolute values of I(3) in all the
pixels; and |I(3)|max is the maximum value of absolute
values of I(3) in all the pixels.

5) Convert the indicator function I(4) to a binary image by

I(5) (i, k) =

(
1, if I(4) (i, k) ≥ β
0, if I(4) (i, k) < β

(11)

where β is an empirical-level threshold. The purpose
of this level set is to filter out the weak clutter in the
FRTM image caused by noise and explicitly determine
the “scatterer” or “background” for a certain pixel in the
normalized image.

6) Segment the binary image I(5) into a series of larger
square blocks, each of which approximately has the size
of 0.5λ0 × 0.5λ0 and contains N0 pixels. Here, λ0 is
the wavelength for the center frequency of the source
wavelet in the free space. Denote the collections of the
indices i and k for the pixels located inside the bth square
block as Ib and Kb, respectively, and desensitize the
binary image I(5) by

I(6) (i, k) =

8̂<̂
:

1, if 1
N0
×
P

i∈Ib

k ∈ Kb

I(5) (i, k) ≥ γ

0, if 1
N0
×
P

i∈Ib

k ∈ Kb

I(5) (i, k) < γ
(12)

where γ is an empirical-level threshold. The purpose of
this level set is to filter out the strong and large clutters
in the FRTM image caused by noise or interferences
between layer boundaries and scatterers or among dif-
ferent scatterers.

7) Estimate the isolated scatterer number based on I(6) and
the basic features of an RTM image, e.g., the curved
upper and lower boundaries. Implement the K-means
clustering to group the “scatterer” pixels in I(6).

8) Determine the boundary of each rectangular subdomain
Dm based on the outermost pixels of each group in four
directions, usually with an extension of 0.5λFRTM. Merge
partially overlapped rectangular subdomains or isolated
upper boundary and lower boundary subdomains.

D. Assembly of the Sensitivity Matrix for 2-D FEBI-LM With
DD

Because the rectangular subdomains D1, . . . ,DM determined
by the algorithm given in Section II-C in which the EM FWI
will be performed keep at least one quadrilateral element
away from the boundaries S1, . . . , SM [29], the sensitivity
matrix for FEBI-LM is only related to the diagonal subma-
trices Z1,1, . . . ,ZM,M in (2a). For convenience to continue the
derivation, we make several assumptions here. First, to avoid
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confusion, we use the subscript l to replace the subscript m of
the xm in [29, eqs. (17)–(19)]. Therefore, xm

l in the following
derivation denotes the dielectric model parameter, i.e., the
complex relative permittivity, in the lth discrete quadrilateral
element of the subdomain Dm. Second, all the nodes inside
all M subdomains are numbered sequentially from V1 to VM .
Specifically speaking, the order is that all the nodes inside V1
are numbered first, and then, those inside V2 are numbered
following the index for the last node in V1. This procedure
continues until all the nodes inside VM are numbered. Third,
the four vertices of the lth quadrilateral element in all the
discrete nodes of the subdomain Vm are numbered as pm

1 , pm
2 ,

pm
3 , and pm

4 . Then, by following the same procedure to derive
the sensitivity matrix presented in [29, Sec. III] and imitating
[29, eq. (18)], we obtain the multiplication of (∂Z/∂xm

l ) and
et in our multidomain problem�

∂Z
∂xm

l
et

�
s+pm

i

=

4X
j=1

∂Zm,m
ii,pq (i, j)

∂xm
l

(et)s+pm
j

=

4X
j=1

(
k2

0

9X
k=1

φi (ξk, ηk) φ j (ξk, ηk) |J (ξk, ηk)|wkξwkη

)
(et)s+pm

j

(13)

where the column vector et is the solution of (1) when the
whole inversion domain is illuminated by the tth transmitter;
s = Σm−1

c=1 (Nc
i + 2Nc

b) denotes the index shift of the mth
subdomain Vm with respect to V1, . . . ,Vm−1; subscripts i and
j of pm

i and pm
j take the values in the range of [1, 4] and

denote the vertex indexes of one discrete element; subscripts
i and j of φi and φ j take the values in the range of [1, 4]
and denote the indexes of the testing function and the basis
function, respectively; subscript ii of Zm,m

ii,pq means that both
the testing function and the basis function act on the internal
nodes of Vm; and the definitions of φi, φ j, ξk, ηk, J, wkξ , and wkη
have been given in [29, Sec. III.A] and will not repeated here.
Then, by referring to [29, eq. (14)], we use the adjoint solution
e∗ of (1) when the whole inversion domain is illuminated by
the rth receiver to multiply (∂Z/∂xm

l )et in (13) and obtain the
multidomain sensitivity matrix term for the lth quadrilateral
element inside Dm

∂F sct
r,t

∂xm
l

= −

4X
i=1

�
(e∗)T �

r,s+pm
i

4X
j=1(

k2
0

9X
k=1

φi (ξk, ηk) φ j (ξk, ηk) |J (ξk, ηk)|wkξwkη

)
(et)s+pm

j
(14)

where F sct takes E sct
y . Finally, we can follow the procedure

given in [29, Sec. III.C] and simultaneously reconstruct the
real relative permittivity and conductivity in multiple sub-
domains D1, . . . ,DM using FEBI-LM. The aforementioned
derivation indicates that the DD significantly lowers the costs
of FEBI-LM in the reconstruction by only assembling the
sensitivity submatrices for M subdomains instead of the whole
domain and thus reducing the dimension of the final sensitivity
matrix.

Fig. 2. Forward EM scattering model for multiple 2-D inhomogeneous
scatterers straddling multiple subsurface layers. Geometry parameters of both
the scatterers and the computational subdomains are annotated in the figure.

TABLE I
DIELECTRIC PARAMETERS AND CENTER COORDINATES OF EIGHT SCAT-

TERER PARTS FOR THE SCATTERING MODEL SHOWN IN FIG. 2

TABLE II
COMPARISONS OF DISCRETIZATION AND COMPUTATIONAL COST FOR THE

SCATTERING MODEL SHOWN IN FIG. 2

III. FORWARD VALIDATION

In this section, we prove the superiority of FEBI with DD
over that without DD for the computation of EM scatter-
ing from multiple 2-D inhomogeneous scatterers straddling
multiple subsurface layers. Fig. 2 shows the scattering config-
uration. The geometry parameters such as the layer boundary
positions, the sizes of two overlapped tilted ellipses, the
triangle, the cross-shape, and the rectangular piston, the sizes
of the whole rounded rectangular domain V , the sizes of the
rounded rectangular subdomains V1 and V4, and the sizes of
the circular subdomains V2 and V3 are annotated in the figure.
The relative permittivity values of the background layers are
ε2

b = 2.2, ε3
b = 1.6, ε4

b = 2.5, ε5
b = 1.3, and ε6

b = 3.0.
Their corresponding conductivity values are σ2

b = 1.2 mS/m,
σ3

b = 0.8 mS/m, σ4
b = 1.6 mS/m, σ5

b = 0.6 mS/m, and
σ6

b = 2.0 mS/m. The first layer is air. The dielectric parameters
and center coordinates of eight parts of the four inhomoge-
neous scatterers are listed in Table I. Note that the center
coordinates of the four subdomains V1–V4 are the same as
those of scatterer parts #1, #3, #5, and #7, respectively. The
center of the domain V is located at (0.0, 1.0) m. There is
only one unit electric dipole located at (0.0, −0.2) m. By
contrast, we evenly place 49 receivers on the horizontal line
at z = −0.5 m. The coordinate of the first receiver is (−2.4,
−0.5) m and the increment between two adjacent receivers
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Fig. 3. Comparisons of the scattered EM fields at the receiver array computed
by the FEBI method with and without DD. (a) Real part of Esct

y . (b) Imaginary
part of Esct

y . (c) Real part of Hsct
x . (d) Imaginary part of Hsct

x . (e) Real part of
Hsct

z . (f) Imaginary part of Hsct
z . (g) Relative errors of the real parts computed

by FEBI with DD with respect to those computed by FEBI without DD.
(h) Relative errors of the imaginary parts computed by FEBI with DD with
respect to those computed by FEBI without DD.

is 0.1 m. The operation frequency is 1 GHz. The FEBI with
DD is implemented in the four subdomains V1–V4, while that
without DD is implemented in the domain V . All the numerical
computation is performed on a workstation with a 48-core
Intel Xeon 6248R 3.0 G CPU and 1024 GB of RAM. The
discretization mesh information for the two methods is shown
in the second and third columns of Table II.

Fig. 3 shows the comparisons of computed scattered fields
at the receiver array by FEBI with DD and without DD and
the relative errors among them. We can see that the results
from the two methods match well. The mean relative errors
of E sct

y , Hsct
x , and Hsct

z computed by FEBI with DD with
respect to those computed by FEBI without DD are 1.10%,
1.14%, and 1.02%, respectively. The individual errors versus
receivers are also displayed in Fig. 3(g) and (h). Obviously,
smaller scattered field values correspond to larger relative
errors. The comparisons of the computational cost of FEBI
with DD and without DD are listed in Table II. As can be

Fig. 4. EM reconstruction model for three 2-D inhomogeneous scatterers
that straddle multiple subsurface layers and are placed far from each other.
Geometry parameters of the scatterers are annotated in the figure.

seen, the cost for both the computation of LMDGFs and
the implementation of FEBI is much lower when the DD is
adopted than when the DD is not used. Indeed, as listed in
Table II, both the discretized arcs on the boundaries and the
quadrilateral elements inside the computational domains are
significantly reduced when the DD is adopted. Consequently,
the computational cost is also reduced thanks to the RBCs
connecting multiple boundaries.

IV. RECONSTRUCTION ASSESSMENT

In this section, we use two numerical cases to show the
superiority of the FEBI-LM method with DD over that without
DD for the reconstruction of multiple inhomogeneous objects
straddling multiple subsurface layers. In the first case, we
verify the feasibility and efficiency of the FRTM with level
set and K-means clustering to determine the multiple domains
and the FEBI-LM with DD to invert for permittivity and
conductivity values of three inhomogeneous objects that are
placed far from each other. In the second case, we test the
algorithms for some harsh situations, e.g., the inversion data
are contaminated by noise or scatterers are close to each other.
In the FRTM, the common-offset GPR profiles are synthesized
by the free software gprMax [37]. In both cases, the excitation
source is a Ricker wavelet with a center frequency of 1.5 GHz.
The source and receiver spectra are sampled from 20 MHz
to 4 GHz with a frequency step of 20 MHz. The coefficient
α in (8) is empirically set as 1.5. The threshold β in (11)
is empirically set as 0.07 and the threshold γ in (12) is
empirically set as 0.1. In the FWI, to avoid the so-called
“inverse crime” [38], we employ the commercial software
COMSOL using meshes different from those used in the FEBI
solver to simulate scattered field data recorded at the receiver
array.

A. Three Subsurface Scatterers Placed Far From Each Other

As shown in Fig. 4, three inhomogeneous scatterers placed
far from each other straddle three subsurface layers. Their
dielectric parameters and center coordinates are listed in
Table III. The background layer boundary positions and the
sizes of the inhomogeneous “T” shape, the homogeneous
square, and the inhomogeneous sphere are annotated in the
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Fig. 5. Computed FRTM images for different algorithm steps listed in Section II-C. (a) Original image I(1) when the scatterers are present. (b) Original image
I(1)
b of the layered background. (c) Compensated image I(2) when the scatterers are present. (d) Compensated image I(2)

b of the layered background. (e) Image
I(3) for only the scatterers. (f) Normalized indicator function I(4). (g) Binary image I(5) with small clutters removed. (h) Binary image I(6) with large clutters
removed. (i) K-means results and determined subdomains enclosed by white boxes.

TABLE III
DIELECTRIC PARAMETERS AND CENTER COORDINATES OF FIVE SCAT-

TERER PARTS FOR THE RECONSTRUCTION MODEL IN FIG. 4

figure. The dielectric parameters of the background layers are
ε2

b = 2.5, σ2
b = 3.0 mS/m, ε3

b = 1.8, σ3
b = 1.0 mS/m, ε4

b = 2.1,
and σ4

b = 2.0 mS/m. The FWI by FEBI-LM without DD is
implemented in the rectangular region D shown in Fig. 4.
The center of D is located at (0.0, 1.4) m. Unfortunately, the
FWI by FEBI-LM with DD cannot be directly implemented
since the location of each subsurface scatterer is unknown.
Therefore, the FRTM with the level set to an indicator function
and the K-means clustering discussed in Section II-C are
employed to determine the inversion subdomain Dm for each
scatterer in advance. The common-offset GPR profile used in
the FRTM contains 1241 traces with a spatial step of 4 mm.
The images generated by migration in different steps listed in
Section II-C are displayed in Fig. 5.

We can see that FRTM only gives the approximate locations
of subsurface scatterers, as shown in Fig. 5(a). The intensity
of the image of the bottom square scatterer is weak due
to the wave attenuation. This phenomenon is also obvious

for the layered background image, as shown in Fig. 5(b).
Fortunately, it can be compensated by the algorithm proposed
in Section II-C and the results are shown in Fig. 5(c) and (d).
Thanks to the compensation, the upper and lower boundaries
of the three objects are clearly extracted, as shown in Fig. 5(e).
This further guarantees the following operations to filter out
the clutter and classify the pixels based on K-means, as shown
in Fig. 5(f)–(i). The determined three subdomains are denoted
by the white rectangular boxes D1–D3 and have the sizes of
1.4×1.12 m2, 1.4×1.12 m2, and 0.9×1.12 m2, respectively, as
shown in Fig. 5(i). Their center coordinates are (−1.5, 0.9) m,
(0.1, 1.7) m, and (1.6, 0.9) m.

In order to perform FWI by FEBI-LM without DD in the
region D and with DD in the subregions D1–D3, we evenly
place 50 transmitters on the horizontal line at z = −0.2 m
and 90 receivers on the horizontal line at z = −0.1 m.
The coordinate of the first transmitter is (−9.8, −0.2) m
and the increment between two adjacent transmitters is 0.4 m.
The coordinate of the first receiver is (−17.8, −0.1) m and
the increment between two adjacent receivers is 0.4 m. The
operation frequency is 300 MHz. The structural consistency
constraint (SCC) [23] is adopted to filter out the background
clutter in FWI. The stop criterion of iterations is that the
data misfit must be less than 5 × 10−3 and no “background”
pixel is removed by the SCC algorithm in four consecutive
steps. Fig. 6 shows the comparisons between the ground truth
profiles and the reconstructed profiles without and with DD.
We can see that no matter whether the DD has been applied to
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Fig. 6. Reconstructed profiles of the inhomogeneous “T” shape, the homogeneous square, and the inhomogeneous sphere straddling multiple subsurface
layers. The first column shows the ground truth profiles. The second column shows the reconstructed profiles without DD applied. The third column shows
the reconstructed profiles with DD applied. White dotted boxes denote true shapes.

Fig. 7. Comparisons of (a) computation time, (b) data misfits of the scattered
fields, (c) model misfits of ε, and (d) model misfits of σ in different FWI
iteration steps with DD and without DD.

FEBI-LM or not, the reconstructed dielectric profiles are close
to the true profiles. In order to further quantify the FWI perfor-
mance by FEBI-LM, we use the model misfit and data misfit
defined in [39, eq. (34)] and also record the peak memory
consumption and time cost in the iterations. It is found that the
FEBI-LM without DD needs 8.6 GB of peak memory, while
that with DD only needs 3.0 GB of peak memory. Meanwhile,
there is also a big discrepancy in each iteration step for the
time consumption, as shown in Fig. 7(a). The total time to
accomplish the FWI by FEBI-LM without DD is 219.8 min,
while that is 64.7 min by FEBI-LM with DD. The FRTM takes
5.1 min and the total eight steps listed in Section II-C only
take 9.8 s. This indicates that, once the FRTM is finished, the
total time spent by the postprocessing algorithm to determine
the boundaries of subdomains is negligible compared with
the time spent by the following FWI. In addition, it should
be emphasized that because the FRTM and the eight steps
listed in Section II-C are only implemented once for the whole

Fig. 8. EM reconstruction model for three 2-D scatterers that straddle two
subsurface layers and are placed close to each other. Geometry parameters of
the scatterers are annotated in the figure.

subsurface region, placing more subsurface scatterers will not
increase their implementation time. The misfit curves shown in
Fig. 7(b)–(d) verified the good inversion performance of FEBI-
LM with and without DD and also confirmed the slightly better
performance of FEBI-LM with DD compared to that without
DD. All these results indicate that the FEBI-LM method with
DD can achieve reliable reconstruction of multiple subsurface
scatterers but with a rather low cost.

B. Three Subsurface Scatterers Placed Close to Each Other

As shown in Fig. 8, an inhomogeneous ring and two
homogeneous “L” shapes placed close to each other straddle
two subsurface layers. The dielectric parameters of the ring are
ε1

s = 2.5, σ1
s = 6.0 mS/m, ε2

s = 3.0, and σ2
s = 9.0 mS/m. Two

“L” shapes have the dielectric parameters ε3
s = ε4

s = 3.0 and
σ3

s = σ4
s = 9.0 mS/m. The center of the ring is located at (−1.2,

1.3) m. The center of the vertical bar of the left “L” shape is
located at (0.2, 1.3) m, while its horizontal-bar center is located
at (0.5, 1.6) m. The center of the vertical bar of the right “L”
shape is located at (1.4, 1.3) m, while its horizontal-bar center
is located at (1.1, 1.6) m. The background layer boundary
positions and the sizes of three scatterers are annotated in the
figure. The dielectric parameters of the background layers are
ε2

b = 1.5, σ2
b = 1.0 mS/m, ε3

b = 2.0, and σ3
b = 3.0 mS/m.
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Fig. 9. Computed FRTM images for three representative steps listed in Section II-C when the GPR profiles are contaminated by noise. The first row shows
the results when the 30 dB of noise is added. The second row shows the results when the 20 dB of noise is added. The third column shows the original
image I(1). The second column shows the image I(3) for only the scatterers. The third column shows the K-means results and determined subdomains. The
subdomains enclosed by dashed green lines are merged to form those enclosed by real white lines.

Fig. 10. Reconstructed profiles of the inhomogeneous ring and two homogeneous “L” shapes straddling two subsurface layers with DD applied. The first
column shows the ground truth profiles. The second column shows the reconstructed profiles when the 30-dB noise is added. The third column shows the
reconstructed profiles when the 20-dB noise is added. White dotted boxes denote true shapes.

In order to test the anti-noise ability of the FRTM with the
level set and the K-means clustering discussed in Section II-C,
we use 30 and 20 dB, respectively, of white Gaussian noise
to contaminate the GPR data synthesized by the free software
gprMax [37]. Here, the white Gaussian noise level is defined
according to the signal-to-noise ratio (SNR) of power. The
original FRTM images migrated from 1151 common-offset
GPR traces with different noise levels are shown in Fig. 9(a)
and (d). As can be seen, although the clutters caused by
noise obviously show up in the images, the three objects
are still clearly discernible. This is further verified by the
compensated images only including scatterers and removing
the layer effects, as shown in Fig. 9(b) and (e). We can
see that the intensity of clutter caused by noise is much
weaker than that of the scatterer. Therefore, even when the
noise level is increased from 30 to 20 dB, the scatterer
images have no obvious change. This means that the FRTM

algorithm itself has certain anti-noise ability, which guarantees
the following level set and K-means operations to determine
the boundaries of the inversion subdomains. As shown in
Fig. 9(c) and (f), the determined FWI subdomains are almost
the same for two different noise levels. The only difference
between the two subfigures is that there are more isolated
“scatterer” pixels in Fig. 9(f) than in Fig. 9(c). This, of
course, is caused by the larger noise but has no effect on
the determined FWI subdomains. These observations imply
that the algorithms proposed in Section II-C have a strong
immunity to noise. On the other hand, it should be noted that
the algorithms fail to distinguish the two “L” shapes, which
have the nearest distance of 1.4λFRTM although they can be
empirically distinguished by our human being on the basis
of images shown Fig. 9(b) and (e). Here, λFRTM is evaluated
according to the 1.5-GHz center frequency of the Ricker
wavelet and ε3

b = 2.0. Consequently, the two subdomains are
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merged to form the final subdomain D2, as shown in Fig.
9(c) and (f). By contrast, the subdomains D1 and D2 are
not merged since the ring and the left “L” shape are placed
6.8λFRTM from each other. These results indicate that the
algorithms proposed in Section II-C may sometimes judge
inaccurate subdomains due to the mutual interference of the
images of two adjacent subsurface scatterers. Fortunately,
the outline of an FRTM image is always larger than the
true boundary of the scatterer and the determined subdomain
boundary is further 0.5λFRTM larger than the image outline.
This guarantees that the determined inaccurate subdomain
encloses the true scatterers, and they will be distinguished by
the following FWI. In order to implement FEBI-LM with DD
and SCC to accomplish FWI, we evenly place 70 transmitters
on the horizontal line at z = −0.2 m and 110 receivers on
the horizontal line at z = −0.1 m. The coordinate of the first
transmitter is (−13.8, −0.2) m and the increment between
two adjacent transmitters is 0.4 m. The coordinate of the first
receiver is (−21.8, −0.1) m and the increment between two
adjacent receivers is 0.4 m. The operation frequency is still
300 MHz. The simulated scattered field data are contaminated
by 30 and 20 dB of white Gaussian noise. Fig. 10 shows the
ground truth profiles, the FWI reconstructed profiles when
30 dB of noise is added, and the FWI reconstructed
profiles when 20 dB of noise is added of the
three subsurface scatterers. Three observations are
made. First, the FEBI-LM with DD and SCC has a
certain anti-noise ability in the inversion. When the
30 dB of noise is added, both the reconstructed shapes
and dielectric parameter values are basically correct. In
particular, the inhomogeneity of the ring clearly shows up
in the reconstructed permittivity distribution, as shown in
Fig. 10(b). Its model misfit is 4.0%. The reconstructed
conductivity profile is worse and its model misfit is 17.2%.
The inhomogeneity of the ring is not obvious, as shown
in Fig. 10(e). This is because the imaginary part of the
complex permittivity is much smaller than the real part,
and thus, the scattered field data are not very sensitive to
the conductivity variation compared with real permittivity.
When we increase the noise level to 20 dB, although some
obvious discontinuities of the permittivity and conductivity
values appear inside the shapes, the reconstructed ring and
“L” shapes are still discernible. The model misfits of the
permittivity and conductivity become 6.1% and 26.7%,
respectively. Second, the FEBI-LM with DD and SCC has a
super-resolution in the FWI. The small gap between two “L”
shapes is equal to 0.28λFWI, where λFWI = 5λFRTM. However,
it is clearly identified by the FEBI-LM algorithm even when
20 dB of noise is added. This is because the FEBI-LM is a
quantitative FWI method realized by strictly solving the EM
scattering equation and the SCC can accurately locate the true
boundary of a scatterer with a high probability [23]. Third,
the FEBI-LM with DD consumes 3.2 GB of peak memory
and 38.5 min to accomplish the FWI when 30 dB of noise is
used to contaminate the scattered field data, while it consumes
3.2 GB of memory and 26.8 min when 20 dB of noise is
added. We can see that the FEBI-LM can also efficiently
reconstruct multiple subsurface scatterers, even when they

are close to each other. In this situation, the DD may fail
to distinguish adjacent subdomains, and they are merged in
our algorithm, as shown in Fig. 9(f). However, the total area
of the subdomains in which the FWI is implemented is still
much smaller than that of the whole domain D. Consequently,
the FEBI-LM with DD can also save a notable amount of
computational resources.

V. SUMMARY AND CONCLUSION

In this work, we extend our previous work and introduce
the DD into both the FEBI and the FEBI-LM methods
to, respectively, lower the computation cost of EM forward
scattering and quantitative reconstruction of multiple inhomo-
geneous scatterers straddling multiple subsurface planar layers.
The RBCs are used to connect the multiple subdomains in the
forward scattering computation accomplished by FEBI and the
FRTM with the level set and the K-means clustering is used
to determine the boundaries of multiple subdomains in FWI
accomplished by FEBI-LM.

Three numerical experiments are carried out to justify the
role of DD in lowering the computational cost of both the
FEBI and FEBI-LM methods for EM scattering and subsurface
reconstruction and also its feasibility in the hybrid reconstruc-
tion. It is found that the significantly lowered cost in the
forward scattering FEBI computation is due to two reasons.
The first one is that the total boundary length is decreased by
DD. As a result, the computational cost of the LMDGFs is
lowered. The second reason is that the total domain area is
decreased by DD, and thus, the pure FEBI cost is lowered.
These two aspects are also the major reasons for the low
cost of the FWI implemented by LM since it iteratively calls
the forward FEBI solver. On the other hand, by pushing
the scattering scenarios to some harsh situations, we test the
feasibility of FRTM with level set and K-means clustering to
correctly locate the subdomains. It is found that the FRTM
itself has a strong anti-noise ability. Its weakness lies in the
low resolution of subsurface scatterers. Scatterers placed close
to each other cannot be distinguished. Fortunately, this can be
judiciously compensated by the following FWI implemented
by FEBI-LM with DD and SCC as long as the subdomains of
two close subsurface scatterers are merged.

One possible additional concern raised by readers is the
influence of the dielectric parameters of the layered back-
ground medium, which may be unknown in the practical
measurement. The conventional method is to use the echo
signal model to retrieve the layer parameters at first [40].
However, it is not easy to distinguish echoes from layer
boundaries and subsurface objects. Fortunately, the machine
learning technique has been used to invert for layer dielectric
parameters when noise signals from clutter exist [40] and
may be used to invert for them even when echo signals from
subsurface objects exist. However, this issue will be left as
future work and not be discussed here.

APPENDIX

By referring to [29, eq. (5)], [39, eqs. (6)–(9)] with the dual-
ity theorem invoked, and [41, eqs. (5)–(9)], we can compute
each element of the submatrices of Zm,m and Zm,1 in (3) by

Zm
uv (p, q) =
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where ψp is the pth bilinear Lagrange polynomial testing func-
tion, ψq is the qth basis function, and ∇t = x̂(∂/∂x) + ẑ(∂/∂z)
is the gradient operator in the xz plane. Subscripts u and v can
take i or b, which indicates that the node is located inside or
on the boundary of the subdomain Dm. δpq is the Kronecker
symbol. −−

R
is the Cauchy principal integral and lqm is the qth arc

on the boundary Sm. ρm
p is the pth field point on the boundary

Sm. nx and nz are the x̂- and ẑ-components of the outward
unit normal vector n̂ on a certain boundary. Gyx

EM , Gyz
EM , and

Gyy
EJ are certain components of the TE-mode LMDGFs, which

can be directly obtained from the TM-mode ones given in
[29, Appendix A] based on the duality theorem. In addition,
it should be noted that both the integral and ∇t applied to
the basis or testing functions can only be implemented by
transforming them to the reference-domain expressions, which
have been given in [29, Appendix B].

The source matrix can be directly assembled by taking the
incident field values at the field points on the boundary Sm

Vm
S (p) = Einc

y

�
ρm

p

�
(A2)

where p is the index of the testing function.
The radiation matrices are assembled by

REy,m
M (r, q) =Z
lqm

�
Gyx

EM

�
ρr, ρ

′
�

n̂z
�
ρ′
�
−Gyz

EM

�
ρr, ρ

′
�

n̂x
�
ρ′
��

dt′ (A3a)

REy,m
J (r, q) =

1
η0

Z
lqm

Gyy
EJ

�
ρr, ρ

′
�

dt′ (A3b)

RHx,m
M (r, q) =Z
lqm

�
Gxx

HM

�
ρr, ρ

′
�

n̂z
�
ρ′
�
−Gxz

HM

�
ρr, ρ

′
�

n̂x
�
ρ′
��

dt′ (A3c)

RHx,m
J (r, q) =

1
η0

Z
lqm

Gxy
EJ

�
ρr, ρ

′
�

dt′ (A3d)

RHz,m
M (r, q) =Z
lqm

�
Gzx

HM

�
ρr, ρ

′
�

n̂z
�
ρ′
�
−Gzz

HM

�
ρr, ρ

′
�

n̂x
�
ρ′
��

dt′ (A3e)

RHz,m
J (r, q) =

1
η0

Z
lqm

Gzy
HJ

�
ρr, ρ

′
�

dt′ (A3f)

where r is the receiver index.
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